Multilayer multiconfiguration time-dependent Hartree method: implementation and applications to a Henon-Heiles hamiltonian and to pyrazine.

نویسندگان

  • Oriol Vendrell
  • Hans-Dieter Meyer
چکیده

The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and a fully general implementation for any number of layers based on the recursive ML-MCTDH algorithm given by Manthe [J. Chem. Phys. 128, 164116 (2008)] is presented. The method is applied first to a generalized Henon-Heiles (HH) hamiltonian. For 6D HH the overhead of ML-MCTDH makes the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report as well 1458D simulations of the HH hamiltonian using a seven-layer scheme. The photoabsorption spectrum of pyrazine computed with the 24D hamiltonian of Raab et al. [J. Chem. Phys. 110, 936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH calculations needing a fraction of the time and resources of reference MCTDH calculations provide already spectra with all the correct features. Accepting slightly larger deviations, the calculation can be accelerated to take only 7 min. When pushing the method toward convergence, results of similar quality than the best available MCTDH benchmark, which is based on a wavepacket with 4.6×10(7)time-dependent coefficients, are obtained with a much more compact wavefunction consisting of only 4.5×10(5) coefficients and requiring a shorter computation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical mechanics of Hénon-Heiles oscillators.

Statistical mechanics is an asymptotic theory valid in the limit of an infinite number of degrees of freedom. The study of small-dimensional chaos, starting from the papers by Lorenz [1]and Henon and Heiles [2], raises the question: What is essential for the laws of statistical mechanics to be true —a large number of degrees of freedom or chaos? For ergodic Hamiltonian systems the answer was gi...

متن کامل

The need for solving the Schrodinger equation numerically can arise in the description of nuclear motion in molecules in the Born-Oppenheimer approximation or in the description of atoms and molecules in self-consistent field

A new computational method for determining the eigenvalues and eigenfunctions of the Schrodinger equation is described. Conventional methods for solving this problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent wave equation. The new method, in contrast, is based on the spectral properties of solutions to the time-dependent Schrodinger e...

متن کامل

A MAPLE Symbolic-Numeric Program for Solving the 2D-Eigenvalue Problem by a Self-consistent Basis Method

The symbolic-numeric program SELFA for solving the the 2D boundary-value problem in self-consistent basis method is presented. The corresponding algorithm of this program using a conventional pseudocode is described too. As example, the energy spectrum and wave functions of E-type for generalized Henon–Heiles Hamiltonian were obtained.

متن کامل

Optimal multiconfiguration approximation of an N-fermion wave function

We propose a simple iterative algorithm to construct the optimal multiconfiguration approximation of an N -fermion wave function. Namely, M N single-particle orbitals are sought iteratively so that the projection of the given wave function in the C M -dimensional configuration subspace is maximized. The algorithm has a monotonic convergence property and can be easily parallelized. The significa...

متن کامل

A Conservative Numerical Integration Algorithm for Integrable Henon–Heiles System

A new conservative numerical integration algorithm for the integrable Henon–Heiles system is presented which conserves all of the constants of motion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 4  شماره 

صفحات  -

تاریخ انتشار 2011